Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 7(1)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-35125348

RESUMO

Electronic micro and nano-devices are suitable tools to monitor the activity of many individual neurons over mesoscale networks. However the inorganic materials currently used in microelectronics are barely accepted by neural cells and tissues, thus limiting both the sensor lifetime and efficiency. In particular, penetrating intracortical probes face high failure rate because of a wide immune response of cells and tissues. This adverse reaction called gliosis leads to the rejection of the implanted probe after few weeks and prevent long-lasting recordings of cortical neurons. Such acceptance issue impedes the realization of many neuro-rehabilitation projects. To overcome this, graphene and related carbon-based materials have attracted a lot of interest regarding their positive impact on the adhesion and regeneration of neurons, and their ability to provide high-sensitive electronic devices, such as graphene field effect transistor (G-FET). Such devices can also be implemented on numerous suitable substrates including soft substrates to match the mechanical compliance of cells and tissues, improving further the biocompatibility of the implants. Thus, using graphene as a coating and sensing device material could significantly enhance the acceptance of intracortical probes. However, such a thin monolayer of carbon atoms could be teared off during manipulation and insertion within the brain, and could also display degradation over time. In this work, we have investigated the ability to protect graphene with a natural, biocompatible and degradable polymeric film derivated from hyaluronic acid (HA). We demonstrate that HA-based coatings can be deposited over a wide range of substrates, including intracortical probes and graphene FET arrays without altering the underlying device material, its biocompatibility and sensitivity. Moreover, we show that this coating can be monitoredin situby quantifying the number of deposited charges with the G-FET arrays. The reported graphene functionalization offers promising alternatives for improving the acceptance of various neural interfaces.


Assuntos
Grafite , Biomimética , Neurônios/fisiologia , Polímeros , Próteses e Implantes
2.
Adv Healthc Mater ; 8(18): e1801331, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31402600

RESUMO

The invasiveness of intracortical interfaces currently used today is responsible for the formation of an intense immunoresponse and inflammatory reaction from neural cells and tissues. This leads to a high concentration of reactive glial cells around the implant site, creating a physical barrier between the neurons and the recording channels. Such a rejection of foreign analog interfaces causes neural signals to fade from recordings which become flooded by background noise after a few weeks. Despite their invasiveness, those devices are required to track single neuron activity and decode fine sensory or motor commands. In particular, such quantitative and long-lasting recordings of individual neurons are crucial during a long time period (several months) to restore essential functions of the cortex, disrupted after injuries, stroke, or neurodegenerative diseases. To overcome this limitation, graphene and related materials have attracted numerous interests, as they gather in the same material many suitable properties for interfacing living matter, such as an exceptionally high neural affinity, diffusion barrier, and high physical robustness. In this work, the neural affinity of a graphene monolayer with numerous materials commonly used in neuroprostheses is compared, and its impact on the performance and durability of intracortical probes is investigated. For that purpose, an innovative coating method to wrap 3D intracortical probes with a continuous monolayer graphene is developed. Experimental evidence demonstrate the positive impact of graphene on the bioacceptance of conventional intracortical probes, in terms of detection efficiency and tissues responses, allowing real-time samplings of motor neuron activity during 5 weeks. Since continuous graphene coatings can easily be implemented on a wide range of 3D surfaces, this study further motivates the use of graphene and related materials as it could significantly contribute to reduce the current rejection of neural probes currently used in many research areas, from fundamental neurosciences to medicine and neuroprostheses.


Assuntos
Materiais Revestidos Biocompatíveis/química , Grafite/química , Neurônios/fisiologia , Animais , Astrócitos/citologia , Adesão Celular , Contagem de Células , Proliferação de Células , Células Cultivadas , Eletroquímica , Camundongos Transgênicos , Neuritos/metabolismo , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...